2 research outputs found

    A framework for cardio-pulmonary resuscitation (CPR) scene retrieval from medical simulation videos based on object and activity detection.

    Get PDF
    In this thesis, we propose a framework to detect and retrieve CPR activity scenes from medical simulation videos. Medical simulation is a modern training method for medical students, where an emergency patient condition is simulated on human-like mannequins and the students act upon. These simulation sessions are recorded by the physician, for later debriefing. With the increasing number of simulation videos, automatic detection and retrieval of specific scenes became necessary. The proposed framework for CPR scene retrieval, would eliminate the conventional approach of using shot detection and frame segmentation techniques. Firstly, our work explores the application of Histogram of Oriented Gradients in three dimensions (HOG3D) to retrieve the scenes containing CPR activity. Secondly, we investigate the use of Local Binary Patterns in Three Orthogonal Planes (LBPTOP), which is the three dimensional extension of the popular Local Binary Patterns. This technique is a robust feature that can detect specific activities from scenes containing multiple actors and activities. Thirdly, we propose an improvement to the above mentioned methods by a combination of HOG3D and LBP-TOP. We use decision level fusion techniques to combine the features. We prove experimentally that the proposed techniques and their combination out-perform the existing system for CPR scene retrieval. Finally, we devise a method to detect and retrieve the scenes containing the breathing bag activity, from the medical simulation videos. The proposed framework is tested and validated using eight medical simulation videos and the results are presented

    Parallelizing a network intrusion detection system using a GPU.

    Get PDF
    As network speeds continue to increase and attacks get increasingly more complicated, there is need to improved detection algorithms and improved performance of Network Intrusion Detection Systems (NIDS). Recently, several attempts have been made to use the underutilized parallel processing capabilities of GPUs, to offload the costly NIDS pattern matching algorithms. This thesis presents an interface for NIDS Snort that allows porting of the pattern-matching algorithm to run on a GPU. The analysis show that this system can achieve up to four times speedup over the existing Snort implementation and that GPUs can be effectively utilized to perform intensive computational processes like pattern matching
    corecore